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ABSTRACT
This article deals with necessary conditions for problems in the
calculus of variations that mcorporate inequality constraints of the form
e A A
D@0 )
Heretofore, such problems have been refr/ced to the equality case by a
method due to F. A. Valentine: >It is shown that by avoiding this transi-
tion and treating these problems directly, the classical multiplier rule
can be obtained under significantly weaker regularity and rank hypotheses.
Besides extending the known results in the case of smooth data, theK
present work generalizes the multiplier rule to nondifferentiable functions.
In § 3 we resurrect Queen Dido in order to present an example of a varia-

tional problem involving a nondifferentiable function.

AMS (MOS) Subject Classification: 49B10

Key Words: Multiplier rule, Inequality constraints, Problem of Mayer,
Problem of Lagrange, Nondifferentiable functions

Work Unit No. 2 (Other Mathematical Methods)

Department of Mathematics, University of Brmsh Columbia, Vancouver,
B.C., Canada V6T 1W5.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.

Pew —A




INEQUALITY CONSTRAINTS IN THE CALCULUS OF VARIATIONS

Frank H. Clarke *

1. Introduction. The classical multiplier rule.

The purpose of this section is to review the multiplier rule in order
to place the results of this report in perspective. Let us begin by
considering the following problem of Mayer in the calculus of variations:

we seek to minimize

{1.1) @(x(1))

over a class of functions x :[0,1] - Rn, subject to the boundary
conditions

(1.2} x(0) e CO’ x(1) € Cl

as well as the equality constraints
(1.3) fi(x(t),;((t)) @ e nte I8 INE ﬁ
L,__\. '

In the above, the functions ¢ and f, and the sets C, and C, s ~
are given; we leave unspecified for now the class of functions x
admitted to competition, as well as other details. Let us mention the
well-known fact that superficially different problems involving the
minimization of integrals can be reshaped to fit the above mould (see

[ 10, Chapter 6]).

*
Department of Mathematics, University of British Columbia, Vancouver,
B. C., Canada V6T 1W5,

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




Suppose now that the function 2z solves this problem. The
"multiplier rule' is a theorem stating that, under suitable hypotheses,
there exist functions \1 (i =1,2,...,r) not all zero (these are the
"Lagrange multipliers') such that 2z satisfies the Euler equation for
the minimization of the integral

1

{ = \ifi(x, x)dt

(summations are from 1l to r). That is, the following differential equation

holds:

(1. 4) L’-{szf(zz')}=}:fo(.zé)

; dt TR U g e e

(D1 and D2 denote differentiation of f(x,x) with respect to the x

and x variables respectively.)

The proof of the multiplier rule was finally completed by Hilbert
following the contributions of many mathematicians (see [ 2] for historical
details). It turns out that the main requirement to assure its validity
is the following:

the vectors sz.(z, z) in Rn are linearly
i
(1.5)
independent for each t.
Consider now a different problem, where instead of the equality

constraints (1. 3) being imposed, we have the inequality constraints

(1. 6) fi(x,)'() <8 (el )




Forty years ago, F. A. Valentine [1l] proposed a method (called
that of ''slack variables'') whereby this problem could be treated by the
existing theory for the case of equality constraints; ever since, it is
this method that has been used in handling constraints of the form (1. 6)
(see for example (1], [7]). When the multiplier rule is applied to the
problem via Valentine's method, the analysis yields as before a nontrivial
set of )‘i satisfying (1. 4). Additionally, it follows that the )‘i are
nonnegative, and that for any t such that fi(z, z) <0 (the constraint
f; <0 is then said to be inactive), we have )‘i(t) = 0.

We stress that this approach to the multiplier rule for inequality
constraints requires (as in the equality case) that hypothesis (1. 5) be
made (for the active indices).

The central thesis of this article is that the case of inequality
constraints is best treated on its own. For example, we will show
(Corollary 2) that in the example discussed above, hypothesis (1. 5)
can be replaced by the following weaker condition:

the vectors szi(z, z) (active indices i) are
£1:7)

convexly independent for each t,
by which we mean that no convex combination of these vectors is equal
to zero. An immediate consequence of this is that we are now able to
treat problems in which the number of (active) inequality constraints

is greater than the dimension n (this would be precluded, of course,

by condition (1. 5)), and possibly infinite.




An equally important feature of the results is that no differentiability
hypotheses intervene. We give an example in § 3 of a variant of a
classical problem in which a nondifferentiable function appears quite
naturally. The next section is devoted to the statement and elaboration

of the main result, the proof of which is given in §4.
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2. A new multiplier rule.

: n
An arc is an absolutely continuous function x :[0,1] =R . We

. . n n n
are given the functions ¢ : R - R and f:R XR -~ R, aswellas

two subsets C0 and Cl of R'. The problem we consider is the
following: to minimize

(2.1) e(x(1))

over all arcs x which satisfy

{2.2) x(0) € CO’ x(1) € Cl

as well as the inequality constraint

(2.3) f(x,x) <0 a.e.

The notation 'a.e.' signifies "for almost all t in [0,1]", in the

sense of Lebesgue measure. The choice of the interval [0,1] is merely
a convenient normalization.

The following hypotheses are made throughout: C0 and Cl are
closed, and ¢ and f are locally Lipschitz. The requirement that ¢
(for example) be locally Lipschitz is equivalent to the following: for
any bounded subset B of Rn, there is a scalar K (depending on B)

2

such that for all X and x_, in B, we have

iw(xl) - v(xz)l < le1 - le :

The classical multiplier rule is stated in terms of derivatives.

Since differentiability is not being posited, a substitute for derivatives

will be used. This is the '"generalized gradient' introduced by the




author in [ 3] (see [ ¢] for the infinite-dimensional definition). In the
case of a locally Lipschitz function g : R - R, the generalized
gradient of g at the point x, denoted dg(x), may be defined as
follows:

(2.4) 9g(x) = co{f : £ = lim '/g(xi), lim X, = x} .

i+ i =00
That is, we consider all sequences X, converging to x such that

/g(x,) exists for each i, and such that the indicated limit { exists.

i
The convex hull of all the points ¢ obtained in this way is 9g(x).
It is evident that if g is Cl, then dg(x) = {/g(x)}. Furthermore,
it may be shown that when g is convex, 9g(x) is the subdifferential
of convex analysis [8].

We now recall some terminology familiar from the calculus of
variations. The arc z 1is a weak local minimum in the above problem
if, for some positive €&, z solves the minimization problem (2.1) - (2. 3)
relative to the arcs x satisfying

[x(t) - z(t)| <e, [x(t) - 2(t)] <e a.e.

The arc z is piecewise-smooth if there is a partition 0 = to < tl TP - tk =]
of [0,1] such that 2z exists and is continuous on (ti-l’ ti) e Lk k)
and admits finite limits at hoth tl-l (from the right) and ti (from the

left). These limits are denoted z(t ) and 'z(ti-) respectively.

i-1"
When =z fails to be differentiable at a point, 2z is said to have a

corner there.




Definition. For a piecewise-smooth arc 2z, we say df is regular
along z if the following condition is satisfied for all t such that

f(z(t), z(t)) = 0:

(2.5) (R" x {0}) N af(z,2) = ¢,

where for corner points t the condition is understood to hold with 2z(t)
replaced by both z(t+) and z(t-). Thus of is regular along z when
the x-component of any element of 8f(z,z) is nonzero, for any t such
that f(z,z) = 0.

Theorem 1. Let the piecewise-smooth arc z provide a weak local
minimum for the problem (2.1) - (2.3), where df is regular along z.
Then there exist an arc p, a measurable function \ :[0,1] - R,

and a scalar A\, equalto 0 or 1 such that:

0
(2.6) (B(t), p(t)) € M (t)Of(2(t), 2(1) a.e.,
(2.7) A(t) >0, A\ (t) = 0 when f(z(t),z2(t)) <0,
(2.8) p(0) is normal to C, at 2(0),
(2.9) there is a vector { in 09¢(2z(1)) such that

-p(1) - Aot isnormalto C, at z(1) .
(2.10) [p(t)| +x_ is never zero .

0
Remark 1. The word '"normal' appearing in the 'transversality conditions"
(2.8) - (2.9) is used in a generalized sense defined in [ 3]; this reduces
to the usual concepts in the case of a Cl-manifold or a convex set. When
there is no endpoint constraint (i.e. C, = Rn), it follows that xo =1,

1
and (2.9) becomes

-p(1) € de¢(z(1)) .

e L e




The applicability of Theorem 1 may at first appear limited due to

the fact that only the single inequality constraint (2. 3) is considered,
whereas most problems will incorporate multiple constraints. We shall
see that in making the transition to such problems, the fact that f
need not be differentiable is crucial. We indicate at the end of § 4
the modifications to be made in Theorem 1 when f has an explicit
dependence on t.

Let us now consider the problem of minimizing (2.1) subject to
(2.2) and the r inequality constraints

(2.11) fi(x,i)go TEN N EREAGE,

We shall suppose that each fi is locally Lipschitz. Let us define f
as follows:

(2.12) f(s,v) = max fi(s,v).
1<i<r

Then the system of inequalities (2.1l) is equivalent to the single
inequality (2. 3).

Corollary 1. Let the piecewise-smooth arc z provide a weak local
minimum for the problem of minimizing (2.1) subject to (2.2) and (2.11),
and suppose that for each t, for each point (él, (,2) in the common
convex hull of the sets

of (z, z), i active,

we have LZ ¢+ 0. Then there exist an arc p, measurable functions




\1:[0,1] »R {1l =1,2,..:,7), and a scalar A, equalto 0 or 1

0
such that (2.8) - (2.10) hold, and also:
(2.13) (b, p) € T\ (Dof(z,2) a.e.,

(2.14) \; 20, \(t) = 0 when fi(z,i) <0 .

Proof: When f is defined by (2.12), the set 9f(s,v) is contained in
the common convex hull of the sets afi(s, v) over the indices i for
which the maximum in (2.12) is attained [ 6, Proposition 9]. It follows
from this that df is regular along 2z, so that Theoreml may be
applied. Upon invoking a measurable selection theorem (see for example
[9]), (2.6) yields: there exist nonnegative measurable functions Y,
such that

(P, P) € M1) Z v,(1)0f(2, 2) ,

and if fi(z, z) <0 then either \(t) or Yi(t) is zero. The required
conclusions now follow upon setting )‘i = )\Yi. B D

We now specialize to the classic case of continuous differentiability.
As mentioned in § 1, hypothesis (l.5) is replaced by the less restrictive (1.7).
Corollary 2. Let the piecewise-smooth arc 2z solve the problem of
minimizing (2.1) subject to (2.2) and the r inequalities (2.11), where
the functions fi are Cl. Suppose that condition (1.7) holds. Then

there exist measurable functions A\, (i = 1,2,...,r) and a scalar \0

i
equal to 0 or 1 such that:
(2.15) p(t) = Z\i(t)szi(z’ z) is an absolutely continuous

function of t satisfying (2.8) - (2.10),

TR R ¥ B BB 1 A 0 <




(2.16) A\ 20, \.(t) = 0 when fi(z,é) <0,

- S S G
(2.17) {Z \i(t)DZfi(z’ )t xi(t)D

It fi(z, =

1
Proof: It suffices to apply Corollary 1, noting that generalized gradients
reduce here to derivatives. Q.E. B

Remark 2. In analogy to the classical case, the above allows us to
assert that the \i are not all zero if no vector in -9¢(z(l)) is normal
to Cl at Z(1):

Remark 3. There is a theorem concerning the generalized gradient of
the upper envelope of a family of functions | 3, Theorem 2.1] that can
be used to derive from Theorem 1 a version of the multiplier rule for an

infinite number of constraints, in a manner completely analogous to that

in which the above corollaries were obtained.




3. Example -~ Queen Dido and the badlands.

Queen Dido is given a length of cord with which to enclose a region
along the shoie, the latter being represented by the line x = 0 in the
t - x plane (see Figure 1). In doing this, she seeks to join the point
(0,0) to the point (1,0) by a curve of length L lying in the half-
plane x >0 so as to maximize the area between the curve and the
t-axis. The problem as described to this point is classical, but let us
now suppose that for a given positive @, the terrain X > a is
inferior, and worth only half as much as the terrain x <a. The return
corresponding to a choice of border function x(t) is then

1
(5.1) [ a(x(t)dt,
0
where
g(x) = X if x<a
(x+a)/2 {f x>a.
Her majesty is seeking to maximize (3.1) (or minimize its negative)

subject to

(3.2) x(0) = 0, x(1) = 0,
1

(3.3) [ +xPdt=1L.
0

Note that g 1is Lipschitz and nondifferentiable.

We proceed to place this problem within the framework of §2,

Corollary 1. We consider the two additional variables y and 2 and
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the constraints

(3. 4) fl(X,y.Z,k.i'. z) = -y -g(x) <0,
(3.5) fz(x,y,z,k,{/,é)=—'z +Jl+k250,
(3.6) x(0) = 0, ¥(0) = 0, 2(0) = 0, x(1) =0, 2(1) = L,

and we define
(3.7) e(x(1), y(1), (1)) = y(1) .

It is not difficult to see that the problem of minimizing (3.7)
subject to (3.4) -~ (3.6) is equivalent to Queen Dido's. The equality

(3. 3) has been replaced by
IJ—_—
f 1+ %2 at <%
0

in this transition, which makes no difference in as much as all the

available cord will be used. In fact, it is clear from the nature of the

problem that both constraints (3.4) and (3. 5) will be active at all times.
In applying Corollary 1, note that the vector x 1is here replaced

by (x,y,2z), that n=3 and r = 2. The sets Co and C, are

1
{(0,0,0)} and {0} xR x {L} respectively. The functions involved are

Lipschitz as required, and the sets afl and dfz are seen to be:

{(gv 0, o) 0, 'l) 0) : = ¢ BQ(X)} ’

{(0,0,0, X VI + ’.(Zv 0"”} ’

from which we infer that the conclusions of Coroliary 1 are available

afl(xv Y, 2, ;‘, 9; é)

i

of (%, Y, 2, %, ¥, 2)

-] 3w




to us for any piecewise-smooth solution, which we shall denote (x,yvy, 2).

We deduce the existence of nonnegative functions \1 and \2 such

that:

the function p(t) defined by

p(t) = [\ xAN1 + >'<2, -\

2 A

1 ZJ

is absolutely continuous, and

(3.8) p(t) ¢ {-x(ag(x)} x {0} x {0} .

It follows that xl and xz are constant. From (2.9) we obtain:

If x, is zero, then X\

0 is zero also, and it follows from (2.10) that

1

\2 must be strictly positive. But then (3.8) implies that the sign of

x is constant, which is not possible except in the degenerate case L = l.
We may thus suppose xo =l= xl. Now if )‘Z were zero, (3.8)
would yield
0 ¢ 9g(x) ,
which is not possible in view of (2.4). Thus \2 is positive.

We have arrived at the following conclusions: X is continuous

and satisfies the equation

(3.9) %{k/ukz}: IA, if x<a

= -1/(zx2) if x>a.

Note that x(t) cannot equal a in any interval, since zero does not

belong to ag(a).




The solutions to the two separate cases in (3.9) are well-known,
since each case is the type of equation that arises in the classical
version of Queen Dido's problem. We find with no difficulty that x
describes an arc of a circle of radius \2 for x <a, and an arc of

a circle of radius 2\2 for x > a. The requirement that these arcs

meet with a common tangent (at X = a) assures that to each xz
there corresponds at most one such configuration (see Figure 1).
Consequently, the optimal arc x is uniquely specified once xz

is known; KZ is determined by the condition that x is of given length
L. Once the nature of x 1is known to be as described above, it is an
easy exercise to obtain (implicit) equations for )‘2 (and the other
parameters of the solution). These relations could then be used to
calculate explicitly the solution x.

It is interesting to determine the nature of the information contributed
by the new multiplier rule. Based on the known classical solution,
one might expect the solution to the present problem to consist of an
amalgam of circular arcs on either side of the line x = a (as indeed it
does). The multiplier rule has served to rule out the possibility that
x lies along the line x = a for any length of time, and has yielded

the crucial facts that the radii of the upper and lower arcs are in the

ratio of two to one, and that these three pieces are smoothly joined.

Thus the information obtained from its use has been essentially global.




4. Proof of Theorem 1.

For ease of notation, we denote f(z(t), z(t)) and df(z(t), z(t))
by f(t) and 48f(t) respectively. When t is a corner point, there
will be occasions when f(t) is to be interpreted as f(z(t), z(t+)) or
f(z(t), z(t-)), but the context will make this evident. The open unit
ball in RZn is denoted B.
Lemma l. There is a constant M with the following property: given
any t in [0,1] and (s,v) in (z(t),z(t)) + B, then for all ¢ in
af(s,v) we have ];’ <M.
Proof: This follows from the hypothesis that f is Lipschitz on
bounded sets, and from the definition (2. 4) of generalized gradient. Q.E.D.
Lemma 2. There exist positive numbers 61 and 62 such that, for
any t in [0,1], forany (s,v) in (z(t),2(t)) + 618, for any (a,p)
in 9f(s,v), we have lpl 362.
Proof: Suppose the lemma false. Then for each i =1,2,..., there
exist t in [0,1], (si, Vi) in (z(ti), é(ti)) + (1/1)B and (al’ Bi) in
af(si, vi) such that ,ﬁil <1/i. By taking subsequences we may assume
that, for some t in [0,1], for some (s,v) and (a,0) in RZn’
we have -t (si, Vi) -+ (s,v), and (ai, pt) -+ (@, 0). It follows that
(s,v) = (z(t), 2(t)). Furthermore, by the upper~semicontinuity of the

generalized gradient [3 ], we know that (a,0) belongs to 8f(t). This

contradicts the regularity of af along z. Q:E.D.




|
l

Now let any positive integer K be given, and choose sK 7o)
that, for any t in [0,1], the inequality

[(s,v) - (2(1), 2(0) | <ey

implies

f(s,v) < f(z(t), z(t)) + 1/K.
Such a choice is possible because f is uniformly continuous on compact
sets. We may suppose that ex is less than 1/K, and also less than
the & occurring in the definition of weak local minimum (§2).

Let us set

At = U{L 2 L e di(s, v), I(s,v) - (2(0), 2D | <1/K},

and define, for t such that f(t) > -1/K,
Gy(t) = A (D) = {y:y- <0 forall L in A(D).

For t such that f(t) <-1/K, set GK(t) = RZn.

Now let K be larger than 1/61. The following result then follows
from Lemmas 1 and 2:
Lemma 3. There is a constant N >1 such that the convex cone GK(t)
has the following property for each t: given any s in Rn, there
exists v in R" such that |v| SNISI and (s,v) € GK(t).

We now define a multifunction EK from [0,1] to Rn as follows:

Et,s) = {v:lvl <€, /2, (s,v) ¢ G (0} .

In the terminology of [ 5], it follows that for ls| < eK/(ZN), the




multifunction EK(t, s) is nonempty, compact-valued, integrably bounded,
measurable in t and Lipschitz in s with Lipschitz constant N.
Lemma 4. The arc x(t) = 0 minimizes
e(z(1) + x(1))
over all arcs x satisfying |x(t)] < eK/(ZN) and the constraints

x(0) e Co - z(0), x(1) € C, - 2(1) ,

1

(4.1) x(t) € E_(t,x(t) a.e.

K
Proof: Let any such x be given. Notice that it suffices to prove the
inequality
(4.2) f(z+x,z2+x) <0 a.e.,
since then the fact that z is optimal for our original problem over a
class of arcs including 2z + x vyields
e(2(1)) < o(z(1) + x(1)) .
In proving (4.2), consider first any t such that f(t) <-1/K. Then (4.2)
follows from the choice of eK, since we have
[(x(t), x(t)) | < £
Now let us consider any t such that f(t) > ~1/K. We have
1
(4.3) f(2(t) + x(t), 2(t) + x(t) = £(t) + [ Dg(A)dr ,
0
where the Lipschitz function g is defined by

g(\) = f(z(t) + Ax(t), 2(t) + Ax(t)) ,

and Dg(\) exists a.e. It now suffices to prove that Dg(\) is




nonpositive for A in [0,1], since then (4.3) implies
f(z(t) + x(t), z(t) + x(t)) < f(t) <0 .
In turn, in order to prove the nonpositivity of Dg(\), it suffices to
prove that Dg(\) belongs to the set (interval)
S = af(z(t) + Ax(t), 2(t) + AxX(1)) - (x(1), x(1)) ,
in view of the definition of AK(t) and the fact that (x(t), x(t)) belongs
to GK(t). We proceed now to prove this.

According to (3, Proposition 1.4] we have max{c : 0 ¢ S} =

lim sup[f(z + Ax + h + éx,z + Ax + h' + 6x) - f(z + \x + h,z + Ax + h") [/},

where the lim sup is takenas h and h' converge to 0 in Rn

and ¢ decreases to 0. By definition, Dg(\) is equal to
lim{ f(z + Ax + 6%,z + Ax + 6X) - f(z + Ax, 2 + AX)]/®
(limit as & decreases to zero), whence :
Dg(\) <max{c : o ¢ S} .
A similar argument with min{oc : 0 ¢ S} shows that Dg(\) belongs to
the interval 8. Q.E.D.
We now apply [ 5, Theorem 2] to the problem in the statement of

Lemma 4. If the function H :[0,1] X R” x R" = R is defined as follows:

H(t,s,p) = max{p - v :v ¢ Et,s)]},

we deduce that an arc pK and a scalar )‘K equalto 0 or 1 exist
such that:

(4.4) (-;')K,O) ¢ 9H(t, 0, pK) a.e.,




(4. 5) pK(O) is normal to C0 - z(0) at 0O,

(4. 6) for some vector L 0 ae(2(1)),
-pK(l) - \K;K is normal to Cl -2z(1) at 0,
- | .
(4.7) ’pK(t), + \K is never zero.

Lemma 5. For almost all t,

(4.8) bK' s+pg - v<0 forall (s,v)e GK(t) ;

Proof: It suffices to show this for |v/| small, since GK(t) is a cone.
Let t be such that (4.4) holds. Then we may suppose that v belongs
to EK(t, s), and consequently

(4.9) H(t9 S, pK) 2> pK "Wy

It is elementary to verify that the function H(t, x,p) is concave in X;
along with (4.4), this implies that -;SK belongs to the superdifferential
at 0 of the concave function x - H(t, x, pK). From this we deduce:

(4.10) H(t,s,pK) - H(t, 0, pK) < -;SK =

Since 0 belongs to E(t,0), it follows from the definition of
H that we have

(4.11) H(t,0,p) 20 .

Now we combine (4.9) - (4.11) to obtain (4.8). Q.E.D.

Remcrk. From Lemma 5 and the definition of GK(t) we deduce:

(4.12) bK(t) and pK(t) are zero when f(t) < -1/K .
We shall now be considering all the above as the integer K

increases to infinity. By taking subsequences, we may assume that the




\l\' are either all 0 or all equal to 1, and that the QK converge
to a vector {. From the easily proven fact that the function x - H(t, x, p)

is Lipschitz with constant N'p,, along with (4.4), we deduce:

(4.13) ,befNIpKl a.e.,

where the constant N is independent of K (since GK increases
with K, N can only decrease as K increases).
Lemma 6. There exist an arc p and a scalar A, equalto 0 or 1

0

satisfying (2.8) - (2.10) as well as:

(4.14) p-s+p-v<0 forall (s,v)e af(t)*, a.e.,

(4.15) p and p equal 0 when f(t) <0 .

Proof: Case l: The )‘K are all 0. By scaling, we may assume that
all the py are nonvanishing and || Py Il =1 (” [ denotes the

supremum norm on [0,1]), where the rescaled functions continue to

satisfy (4.12), (4.13), (4.5) and (4.6) (with X, = 0). In view of (4.13),

K
the Dunford-Pettis criterion implies that {;')K} admits a subsequence
converging weakly in L1 to p (say). It follows for suitable sub-
sequences that p is the derivative of an arc p to which pK converges
uniformly (see [ 4, Lemma 5] for the details of the argument). Since p

satisfies (4.13) and "p” =1, (2.10) holds (with \_ = 0), as well

0

as (2.8) - (2.9). Relation (4.15) is an immediate consequence of (4.12).

*
In order to prove (4.14), note first that GK(t) increases to 9f(t)

for any t such that f(t) = 0 (this uses the upper semicontinuity of




of [3]). Furthermore, weak convergence preserves linear inequalities
such as (4.8); the result follows.
Case 2: The )‘K are all equal to I, and “pK” is bounded. In

the case the argument is unchanged, except that the need to rescale

initially is eliminated. The conclusions (2.9) - (2.10) hold with X\ _ = 1.

0

Case 3: The )‘K are all equal to 1, and ”pK“ is unbounded.

We may assume that ”pK” increases to infinity. We rescale the

arcs  py by dividing by "pK [l (which is certainly nonzero for K

large). The argument then continues as in Case l, and we get conditions

(2.9) and (2.10) with xo = 0, since XK/”pK” converges to 0.

In order to complete the proof of the theorem, it now suffices to
infer (2.6) and (2.7) from (4.14) and (4.15). The condition (4.14) says
that (p,p) belongs to (af(t)*)*, which is the closed convex cone
generated by df(t). This has the following characterization, for any t
such that f(t) = 0:

@) = (N 1 x 20,2 ¢ af()}

because 09f(t) is a compact convex set not containing zero. Invoking
a measurable selection theorem (see for example [9]), we obtain (2. 6)
when f(t) = 0, and (2.7) follows by simply setting \(t) = 0 when
f(t) <0 and using (4.15). QD
Remark. The case in which f has an explicit dependence on t may

be treated exactly as above with the additional hypotheses:

(a) f(t,x,v) is a measurable function of t for each (x,v),

QOVE. D,




(b) 8f(t,x,v) is an upper semicontinuous multifunction (here,
af refers to the generalized gradient with respect to (x,v)).

Both these hypotheses are automatically satisfied when f is
independent of t. In the case of t-dependence, (a) is required to
ensure that the multifunction EK constructed in the proof is measurable

in t, while (b) is necessary for the conclusions of Lemmas 2 and 6.

«23=
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